skip to main content


Search for: All records

Creators/Authors contains: "Vigna-Gómez, Alejandro"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Milky Way is believed to host hundreds of millions of quiescent stellar-mass black holes (BHs). In the last decade, some of these objects have been potentially uncovered via gravitational microlensing events. All these detections resulted in a degeneracy between the velocity and the mass of the lens. This degeneracy has been lifted, for the first time, with the recent astrometric microlensing detection of OB110462. However, two independent studies reported very different lens masses for this event. Sahu et al. inferred a lens mass of 7.1 ± 1.3M, consistent with a BH, while Lam et al. inferred 1.6–4.2M, consistent with either a neutron star or a BH. Here, we study the landscape of isolated BHs formed in the field. In particular, we focus on the mass and center-of-mass speed of four subpopulations: isolated BHs from single-star origin, disrupted BHs of binary-star origin, main-sequence stars with a compact object companion, and double compact object mergers. Our model predicts that most (≳70%) isolated BHs in the Milky Way are of binary origin. However, noninteractions lead to most massive BHs (≳15–20M) being predominantly of single origin. Under the assumption that OB110462 is a free-floating compact object, we conclude that it is more likely to be a BH originally belonging to a binary system. Our results suggest that low-mass BH microlensing events can be useful to understand binary evolution of massive stars in the Milky Way, while high-mass BH lenses can be useful to probe single stellar evolution.

     
    more » « less
  2. ABSTRACT TIC 470710327, a massive compact hierarchical triple-star system, was recently identified by NASA’s Transiting Exoplanet Survey Satellite. TIC 470710327 is comprised of a compact (1.10 d) circular eclipsing binary, with total mass $\approx 10.9\!-\!13.2\, \rm {M_{\odot }}$, and a more massive $\approx 14\!-\!17\, \rm {M_{\odot }}$ eccentric non-eclipsing tertiary in a 52.04 d orbit. Here, we present a progenitor scenario for TIC 470710327 in which ‘2 + 2’ quadruple dynamics result in Zeipel–Lidov–Kozai oscillations that lead to a contact phase of the more massive binary. In this scenario, the two binary systems should form in a very similar manner, and dynamics trigger the merger of the more massive binary either during late phases of star formation or several Myr after the zero-age main sequence, when the stars begin to expand. Any evidence that the tertiary is a highly magnetized (∼1–10 kG), slowly rotating blue main-sequence star would hint towards a quadruple origin. Finally, our scenario suggests that the population of inclined compact multiple-stellar systems is reduced into coplanar systems, via mergers, late during star formation or early in the main sequence. The elucidation of the origin of TIC 470710327 is crucial in our understanding of multiple massive star formation and evolution. 
    more » « less
  3. Abstract

    The LIGO–Virgo–KAGRA Collaboration recently detected gravitational waves (GWs) from the merger of black hole–neutron star (BHNS) binary systems GW200105 and GW200115. No coincident electromagnetic (EM) counterparts were detected. While the mass ratio and BH spin in both systems were not sufficient to tidally disrupt the NS outside the BH event horizon, other, magnetospheric mechanisms for EM emission exist in this regime and depend sensitively on the NS magnetic field strength. Combining GW measurements with EM flux upper limits, we place upper limits on the NS surface magnetic field strength above which magnetospheric emission models would have generated an observable EM counterpart. We consider fireball models powered by the black hole battery mechanism, where energy is output in gamma rays over ≲1 s. Consistency with no detection by Fermi-GBM or INTEGRAL SPI-ACS constrains the NS surface magnetic field to ≲1015G. Hence, joint GW detection and EM upper limits rule out the theoretical possibility that the NSs in GW200105 and GW200115, and the putative NS in GW190814, retain dipolar magnetic fields ≳1015G until merger. They also rule out formation scenarios where strongly magnetized magnetars quickly merge with BHs. We alternatively rule out operation of the BH-battery-powered fireball mechanism in these systems. This is the first multimessenger constraint on NS magnetic fields in BHNS systems and a novel approach to probe fields at this point in NS evolution. This demonstrates the constraining power that multimessenger analyses of BHNS mergers have on BHNS formation scenarios, NS magnetic field evolution, and the physics of BHNS magnetospheric interactions.

     
    more » « less
  4. ABSTRACT

    Making the most of the rapidly increasing population of gravitational-wave detections of black hole (BH) and neutron star (NS) mergers requires comparing observations with population synthesis predictions. In this work, we investigate the combined impact from the key uncertainties in population synthesis modelling of the isolated binary evolution channel: the physical processes in massive binary-star evolution and the star formation history as a function of metallicity, Z, and redshift z, $\mathcal {S}(Z,z)$. Considering these uncertainties, we create 560 different publicly available model realizations and calculate the rate and distribution characteristics of detectable BHBH, BHNS, and NSNS mergers. We find that our stellar evolution and $\mathcal {S}(Z,z)$ variations can combined impact the predicted intrinsic and detectable merger rates by factors in the range 102–104. We find that BHBH rates are dominantly impacted by $\mathcal {S}(Z,z)$ variations, NSNS rates by stellar evolution variations and BHNS rates by both. We then consider the combined impact from all uncertainties considered in this work on the detectable mass distribution shapes (chirp mass, individual masses, and mass ratio). We find that the BHNS mass distributions are predominantly impacted by massive binary-star evolution changes. For BHBH and NSNS, we find that both uncertainties are important. We also find that the shape of the delay time and birth metallicity distributions are typically dominated by the choice of $\mathcal {S}(Z,z)$ for BHBH, BHNS, and NSNS. We identify several examples of robust features in the mass distributions predicted by all 560 models, such that we expect more than 95 per cent of BHBH detections to contain a BH $\gtrsim 8\, \rm {M}_{\odot }$ and have mass ratios ≲ 4. Our work demonstrates that it is essential to consider a wide range of allowed models to study double compact object merger rates and properties. Conversely, larger observed samples could allow us to decipher currently unconstrained stages of stellar and binary evolution.

     
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)
    The coalescence of two neutron stars was recently observed in a multi-messenger detection of gravitational wave (GW) and electromagnetic (EM) radiation. Binary neutron stars that merge within a Hubble time, as well as many other compact binaries, are expected to form via common envelope evolution. Yet five decades of research on common envelope evolution have not yet resulted in a satisfactory understanding of the multi-spatial multi-timescale evolution for the systems that lead to compact binaries. In this paper, we report on the first successful simulations of common envelope ejection leading to binary neutron star formation in 3D hydrodynamics. We simulate the dynamical inspiral phase of the interaction between a 12 M⊙ red supergiant and a 1.4 M⊙ neutron star for different initial separations and initial conditions. For all of our simulations, we find complete envelope ejection and a final orbital separation of ≈1.1 - 2.8R⊙ , leading to a binary neutron star that will merge within 0.01-1 Gyr. We find an αCE -equivalent efficiency of ≈0.1 - 0.4 for the models we study, but this may be specific for these extended progenitors. We fully resolve the core of the star to ≲0.005R⊙ and our 3D hydrodynamics simulations are informed by an adjusted 1D analytic energy formalism and a 2D kinematics study in order to overcome the prohibitive computational cost of simulating these systems. The framework we develop in this paper can be used to simulate a wide variety of interactions between stars, from stellar mergers to common envelope episodes leading to GW sources. 
    more » « less
  8. null (Ed.)
    Abstract Close double neutron stars (DNSs) have been observed as Galactic radio pulsars, while their mergers have been detected as gamma-ray bursts and gravitational wave sources. They are believed to have experienced at least one common envelope episode (CEE) during their evolution prior to DNS formation. In the last decades, there have been numerous efforts to understand the details of the common envelope (CE) phase, but its computational modelling remains challenging. We present and discuss the properties of the donor and the binary at the onset of the Roche lobe overflow (RLOF) leading to these CEEs as predicted by rapid binary population synthesis models. These properties can be used as initial conditions for detailed simulations of the CE phase. There are three distinctive populations, classified by the evolutionary stage of the donor at the moment of the onset of the RLOF: giant donors with fully convective envelopes, cool donors with partially convective envelopes, and hot donors with radiative envelopes. We also estimate that, for standard assumptions, tides would not circularise a large fraction of these systems by the onset of RLOF. This makes the study and understanding of eccentric mass-transferring systems relevant for DNS populations. 
    more » « less
  9. Abstract The Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy, and, as such, it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and space-born instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA’s first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed; ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or interme-diate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help making progress in the different areas. New research avenues that LISA itself, or its joint exploitation with upcoming studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024